$18 / 4 / 23$ MATH 2060 lecture
9.4 Series of functions

- Sequences of f_{u} 's $f_{u} \rightarrow f$.
- uniform convergence $\Rightarrow f_{n}$ cts, then f is cts.
$f_{u} \in R[a, b]$, then $f \in R[a, b]$.
- Infinite Series $\sum_{n=1}^{\infty} a_{n}, a_{n} \in \mathbb{R}$.
- Root Test, Ratio Test, Comparison This, Absolute Convergence, ...

Went it talk about infmile series of function:

$$
f_{1}(x)+f_{2}(x)+\infty=\sum_{n=1}^{\infty} f_{1}(x)
$$

Power Series: $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$.
Def (9.4.1): let $\left(f_{n}\right)$ be a sequence of function, $f_{n}: D \subset \mathbb{R} \rightarrow \mathbb{R}$, then the sequence of partial sums $\left(S_{n}\right)$ of the inpmite series \& functions $\sum_{n=1}^{\infty} f_{n}$, is defined by $S_{n}(x):=\sum_{k=1}^{n} f_{k}(x), \forall x \in D$.

- If $\left(s_{n}\right)_{\infty}$ converges to a function f on D, then we say thea the infinite series $\sum_{n=1}^{\infty} f_{n}$ converges to f on D.

$$
\left(\begin{array}{c}
\forall x \in D, \forall \varepsilon>0, \exists k(\varepsilon, x) \in \mathbb{N}, \text { st if } n \geqslant K \text {, then } \\
\left|s_{n}(x)-f(x)\right|<\varepsilon .
\end{array}\right.
$$

We wite $f(x)=\sum_{n=1}^{\infty} f_{n}(x), f=\sum f_{n}$.

- If $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ comerges $\forall x \in D$, then we say $\sum_{n=1}^{\infty} f_{n}$ is absolutely convergent

$$
(\sin \Rightarrow f)
$$

- If s_{n} converges uniformly to f on D, then we say $\sum_{n=1}^{\infty} f_{n}$ is unifonly convergent of f on D.
$\forall \varepsilon>0, \exists K=K(\varepsilon) \in \mathbb{N}$ s.t if $n \geqslant K$, then $\left|s_{n}(x)-f(x)\right|<\varepsilon, \forall x \in D$.

Thu 9.4.2: If each f_{n} is continuous on $D, \forall n \in \mathbb{N}$, and Σf_{n} converges uniformly to f on D, then f is continons on D.
Tm 8.43 : If each $f_{u} \in R[a, b], \forall n \in N$, and $\sum f_{u}$ converges mifonly to f on D, then $f \in R[a, b]$ and $\int_{a}^{b} f=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}$
Tuterchanging the limit:

$$
\left.\int_{a}^{b} f=\int_{a}^{b} \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}\right)
$$

Th 9.4.4 If each $f_{n}:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}$,

- f_{n}^{\prime} exists on $[a, b], \forall n \in \mathbb{N}$
- $\exists x_{0} \in[a, b]$ s.t. $\sum f_{u}\left(x_{0}\right)$ converges.
- $\sum_{n=1}^{\infty} f_{n}^{\prime}$ converges unfonly on $[a, b]$

Then $\exists f:[c, b] \rightarrow \mathbb{R}$ s.t.

- $\sum_{n=1}^{\infty} f_{n}$ comererge infonly to fon [nib]
- f^{\prime} exists and $f^{\prime}=\sum_{n=1}^{\infty} f_{n}^{\prime}$

If (of Thn 9.4.2-9.4.4): Apply correspondin resutt for sequences of fuctions to the patial suns $\left(s_{n}\right)$.
Tests for Unfonn Convergence
Thin 9.4.5 (Caucly Criteria) $\sum_{n=1}^{\infty} f_{n}$ is unformby onvergent on D fand only if

$$
\begin{aligned}
& \forall \varepsilon>0, \exists K(\varepsilon) \in \mathbb{N} \text { s.t. } \\
& \text { if } m>n \geqslant K(\varepsilon),\left|f_{n+1}(x)+\ldots+f_{m}(x)\right|<\varepsilon, \forall c \in D
\end{aligned}
$$

Pf: Apply Candy Crteria for unifon convergence for seguences of functiono
on $\left(s_{n}\right)(\operatorname{an} 8.1 .10): \quad s_{n} \Rightarrow f$ if $\forall \varepsilon>0 \quad \exists K(\varepsilon) \in \mathbb{N}$ sit. if $m>n \geqslant k,\left|s_{m}(x)-s_{n}(x)\right|<\varepsilon$.

$$
\left|f_{n+1}(x)+\ldots+f_{m}(x)\right|<\varepsilon .
$$

In 9.4.6 (Weierstrass M-test)
If 1) $\left|f_{n}(x)\right| \leqslant \mathbb{M}_{n} \quad \forall n \in \mathbb{N}, x \in D$
2) $\sum_{n=1}^{\infty} M_{n}$ is convergent (not necesscoirly unifonly convergent)

Then $\sum_{n=1}^{\infty} f_{n}$ is uniformly convergent.
Pf: $0 \leqslant M_{n}$ and $\sum_{n=1}^{\infty} M_{n}$ is convergent implies it is Candy ie.
let $L_{n}=\sum_{k=1}^{n} M_{k}$, then $\forall \varepsilon>0 \exists K(\varepsilon) \in \mathbb{N}$, st if $m>n \geqslant K(\varepsilon)$,
$L_{m}-L_{n}<\varepsilon . \quad$ (spice each $M_{n} \geqslant 0, L_{m} \geqslant L_{n}$).
芷

$$
M_{n+1}+\cdots+M_{m}<\varepsilon_{1}
$$

By $\left|f_{n}(x)\right| \leqslant M_{n}$, we then have

$$
\begin{aligned}
& \text { triangle ines. } \\
& \left|f_{n+1}(x)+\ldots+f_{m}(x)\right| \leqslant M_{n+1}+\cdots+M_{m}<\varepsilon .
\end{aligned}
$$

So by the Candy Criteria, $\sum_{n=1}^{\infty} f_{n}$ converges unifonly on D.
Power Series
Def $9.4 .7 \sum_{n=1}^{\infty} f_{n}$ is a power series centred at $c \in \mathbb{R}$

$$
\text { If each } f(x)=a_{n}(x-c)^{n} \text {, "inpmite polynomial } \sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

Rub: For simplicity, from now on we will only talk about the case where
the centre $c=0$, we are free to do this because setting $y=x-c \quad$ (trauslection), turns any power series centred atc to a power series centred at 0 .
2) Index from $n=0, \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$
3) $\sum_{n=0}^{\infty} a_{n} x^{n}$ may not be defined on all of R.
i) $\sum_{n=0}^{\infty} n!x^{n}$ converges only at $x=0$. (Exercise, Ratio test).
ii) $\sum_{n=0}^{\infty} x^{n}$ converges only for $|x|<1$. (Geometric series)
iii) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ Converges for all $x \in \mathbb{R}$ (Power series expansion for e^{x}).

So we need ts determine the set on which $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges.

Recall (Def $3.4 .10 \mathrm{E} \operatorname{tm} 3.4 .11$) : For $\left(x_{n}\right)$ a bonded sequence, the lint superior of $\left(x_{n}\right)$ is defied as:

$$
\begin{aligned}
\limsup \left(x_{n}\right)= & =\text { inf }\left\{\nu \in \mathbb{R}: \nu<x_{n} \text { for finitely many } n\right\} \\
= & \text { inf }\left\{\nu \in \mathbb{R}: x_{n} \leqslant \nu \text { for sufficiently longe } n\right\} \\
& \exists K(\nu) \in \mathbb{N} \text { set if } n \geqslant K(v) \text {, then } x_{n} \leqslant \nu
\end{aligned}
$$

i) If $\nu>\lim s u p\left(x_{n}\right)$, then
$k_{n} \leqslant \nu$ for sufficiently large n.
ii) If $\omega<\limsup \left(x_{n}\right)$, then \exists infinitely many $n \in N$ set $\omega \leqslant k_{n}$.

Def 9.4 .8 Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series and

$$
\rho= \begin{cases}\left.\operatorname{linsup}\left(\left|a_{n}\right|^{\mid}\right)^{\mid}\right) & \text {if }\left(\left|a_{n}\right|^{\frac{1}{n}}\right) \text { is a bounded sequence } \\ +\infty & \text { otherwise }\end{cases}
$$

Then the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$ is

$$
R=\frac{1}{\rho}=\left\{\begin{array}{ll}
0 & \text { if } \rho=+\infty \\
\frac{1}{\operatorname{linsup}\left(\left.l a_{u}\right|^{\frac{1}{2}}\right)}
\end{array} \quad \text { (includes } R=+\infty \text { if } \rho=0\right. \text {). }
$$

Then the interval of convergence is the pean interval $(-R, R)$.
Tm 9.4 .9 (Candy-Hadamard tin) : If R is the radius of comergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\sum_{n=0}^{\infty} a_{n} x^{n}$ is $\left\{\begin{array}{l}\text { absolutely convergent if }|x|<R \\ \text { divergent } \\ \\ \text { if }|x|>R .\end{array}\right.$
Rum: No conclusion for $|x|=R$

i) $\sum_{n=0}^{\infty} x^{n}: \rho=\operatorname{linsup} l=l \Rightarrow R=1$.
$x=1: \sum_{n=0}^{\infty} x^{n}=1+1+\ldots$ is divergent.
$x=-1 \sum_{n=0}^{\infty} x^{n}=-1+1-1+\cdots$ is divergent.
ii) $\sum_{n=0}^{\infty} \frac{1}{n} x^{n}: R=1$. (Exercise)
$K=1: \sum_{n=1}^{\infty} \frac{1}{k^{n}} n^{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots$ is divergent
$x=-1 \sum_{n=0}^{\infty} \frac{1}{n} x^{n}=-1+\frac{1}{2}-\frac{1}{3}+\cdots \quad$ is convergent.
iii) $\sum_{n=0}^{\infty} \frac{1}{n^{2}} x^{n}, \quad R=1$, convergent at both $x=1,-1$.

If of Candy-Hacomard:
Case: $R=0,+\infty$ left as an exercise.
assume $0<R<+\infty$. Clearly at $x=0, \sum_{n=0}^{\infty} a_{n} x^{n}$ converges.

Suppose $|x|<R$ Then $\exists 0<c<1$ such that $|x|=c R=\frac{c}{p}$.

$$
\begin{aligned}
& c=\rho|x|=\operatorname{linsup}\left(\left|a_{n}\right|^{\frac{1}{n}}\right)|x|=\operatorname{linsup}\left(\left|a_{n}\right|^{\frac{1}{n}}|x|\right) \\
& \begin{aligned}
& \exists K(x, c) \in N \text { set if } n \geqslant K \quad\left|a_{n}\right|^{\frac{1}{n}}|x| \leqslant C \\
& \Rightarrow\left|a_{u} x^{n}\right| \leqslant C^{n}, \forall n \geqslant K .
\end{aligned}
\end{aligned}
$$

Since $0<c<1, \sum_{n=0}^{\infty} c^{n}$ is convergent, so by comparison test $(3.7 .7)$ $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ converges, so $\sum_{n=0}^{\infty} a_{n} x^{n}$ is absolutely convergent.
For $|x|>R,|x|>\frac{1}{\rho} \Leftrightarrow \rho>\frac{1}{x \mid} \Rightarrow \limsup \left(\left|a_{n}\right|^{\frac{1}{a}}\right)>\frac{1}{|x|}$.
$\Rightarrow\left|a_{n}\right|^{\frac{1}{n}}>\frac{1}{|x|}$ for infinitely may n.
$\Rightarrow\left|a_{n} x^{n}\right|>1$ for infinitely man n.
$\Rightarrow a_{u} x^{n} \ngtr 0$, which implies $\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges.,

Remiss: 1) If $\operatorname{lin}\left|\frac{a_{n}}{a_{n+1}}\right|$ exists, then $R=\operatorname{lin}\left|\frac{a_{n}}{a_{n+1}}\right|$

- Reciprocal of Ratio Test.
- Includes $\lim \left|\frac{a_{m}}{a_{n+1}}\right| \rightarrow+\infty$
i) $\sum x^{n}, \sum \frac{1}{n} x^{n}, \sum \frac{1}{h^{2}} x^{n}$

$$
\begin{aligned}
\left|\frac{a_{n}}{a_{n+1}}\right|^{\nu}=\frac{1}{n^{2}} / \frac{1}{(n+1)^{2}}=\left(\frac{n+1}{n}\right)^{2} & \Rightarrow \text { as } n+\infty \\
& \Rightarrow R=1
\end{aligned}
$$

2) If we can choose $0<c<1$ modependent of $|x|$, then we nould have uniform convergence.
Inn 9.4.10 let R be the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $[a, b] \subset(-R, R)$ then $\sum_{n=0}^{\infty} a_{2} x^{n}$ is unfonly convergent on $[a, b]$. (closed and bounded)
Rah: 1) $R=0$ is excluded $(-R, R)=(0,0)=\varnothing$.
3) $(-R, R)$ conld indude $(-\infty, \infty)$, heace why we need $[a, b]$ dosed ani bounded.
Pf: Since $[a, b] \subset(-R, R)$ is cbsed and boundel, $\exists 0<c<1$ s.t $-c R<a$ anl $b<c R$
So $\forall x \in[a, b],|x|<c R$. bot now C is independer of of $|x|$ (only depends on a, b).
By argument aloone, $\exists K=K(a, b) \in N$ s.t. $\left|a_{n} x^{n}\right| \leqslant c^{n}, \forall n \geqslant K$. $\sum_{n=0}^{\infty} c^{n}$ is convergent, so by Weierstrass M-test $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges inifonly/
The 9.4.11: : The lint of a power series is contions in $(-R, R)$
4) a poun serles can be integreted term by tem

$$
\left(\int_{n=0}^{\infty} \sum_{n}^{\infty} a_{n}=\sum_{n=0}^{\infty} \int_{a}^{b} a_{n} x^{n}\right)
$$

oner any closed bomeled intemal $[a, b] \subset\left(-R_{1} R\right)$
Pf: 1) $\forall x \in(-R, R)$, take a, b such thent $x \in[a, b] \subset(-R, R)$
aien on $[a, b], \sum_{n=0}^{\infty} a_{n} x^{n}$ comerges uniforly and hence is contious on [$a, b]$, in partoculear at x.
2) Similar.

Thi 9.4.R (Differentation Tmi)
a poner series can be differentiated term by term unothin the intewal of comergence $(-R, R)$, moreoves if $R=$ radius of coniergence for

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad \text { then }
$$

the radin of convergence of $\sum_{n=0}^{\infty} n a_{n} x^{n-1}$ is also \mathbb{R} and

$$
f^{\prime}(x)=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad \text { for }|x|<R
$$

Auk: This is stronger them the general case because we dort require uniform convergence.
Pf: Sine $n^{\frac{1}{n}} \rightarrow 1$, the sequence $\left|n a_{n}\right|^{\frac{1}{2}}$ is bounded foal only if $\left|a_{n}\right|^{\frac{1}{4}}$ is bonded and moreover

$$
\text { linsup }\left|n a_{n}\right|^{\frac{1}{n}}=\operatorname{linsup}\left(n^{\frac{1}{a}}\left|a_{n}\right|^{\frac{1}{n}}\right)=\operatorname{linsup}\left(\left|a_{n}\right|^{\frac{1}{n}}\right)
$$

So radius of convergence of $\sum_{n=0}^{\infty} n a_{n} x^{n-1}=$ radius of comergance of $\sum_{n=0}^{\infty} a_{n} x^{n}$

$$
=R
$$

$\forall x \in(-R, R)$, choose $0<a<R$ s.t. $|x|<a$.
Then consider $[-a, a]_{\infty}(-R, R)$ is closed bonded
$O \in[-a, a]$ st. $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $k=0$

So by $\operatorname{Tm}\left\{.4 .10, \tan 8.2 .3\right.$ and $\left(a_{n} x^{n}\right)^{7}=n a_{n} x^{n-1}$ $\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty}\left(a_{n} x^{n}\right)^{\prime}$ comerges unifonly on $\left[-a_{1} a\right]$.
So by π_{n} 9.4.4. $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ on $[-a, a]$.
Since x was artitrang, we hive the result on $(-R, R) / i v$
Rule: 1) Thn 9.4.12 malues wo assertion aboit $|x|=R$
e.g. $\sum \frac{1}{n^{2}} x^{n}$ comerges for $|x|=1$
but $\left(\sum \frac{1}{u^{2}} x^{n}\right)^{\prime}=\sum \frac{1}{n} x^{n-1}$ comerges at $x=-1$
dringes at $x=1$
dvinges at $x=1$.
2) Repeated application of $\pi_{n} 9.4 .12$ gives
$\forall k \in N, \quad\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{(k)}=\sum_{n=k}^{\infty} \frac{n l}{(n-k)!} a_{n} x^{n-k}, n /$ redius of convergence R

