18/4/23 MATH 2000 Lecture
9.4 Sezils of functions
- Sequences of fin's $f_n \rightarrow f$.
- Uniform convergence => In cts, then f is cts.
- uniform convergence \Rightarrow in cts, then f is cts, fier R[a,b], then fer R[a,b],
- Jufinite Services S. An, and R.
- Root Test, Ratio Test, Comparison Thus, absolute Convergence,
Went to talk about infinite reries of functions.
$f_{1}(x) + f_{2}(x) + \dots = \sum_{n=1}^{\infty} f_{n}(x)$
Power Series: $\sum_{n=0}^{\infty} a_n (x-c)^n$.
Def (9.4.1): let (fn) be a sequence of functions, fn: $D \subseteq \mathbb{R} \to \mathbb{R}$, then the sequence of partial sums (Sn) of the infinite series of functions $\sum_{n=1}^{\infty} f_n$, is defined by $S_n(\mathbb{R}) := \sum_{n=1}^{\infty} f_n(\mathbb{R})$, $\forall X \in \mathbb{D}$.
sequence of partial sums (Sn) of the infinite series of functions I for, is defined
by $S_n(x) := \sum_{k=1}^{n} f_k(x)$, $\forall x \in D$.

• If (sn) converges to a function f on D, then we say that the infinite
series Efr converger to f on D.
(VRED, VE>O, EK(E, x) EN, st. if N>K, then)
$ s_n(k) - f(k) < \varepsilon,$
We write $f(x) = \sum_{n=1}^{\infty} f_n(x)$, $f = \Sigma f_n$.
· If \$ [fn(x)] converges tx eD, then we say \$fn is absolutely convergent
· If Sn converges uniformly to f on D, then we say 2 for is uniformly convergent to f on D.
$\forall z > 0, \exists K = K(z) \in \mathbb{N}$ s.t. if $h \ge K$, then $ s_n(x) - f(x) < z$, $\forall x \in \mathbb{D}$.

The 9.4.2: If each for is continuous on D, UneN, and Sfn converges uniformly to f on D, then f is continous on D. $T_{\text{In}} \frac{q}{43}$: If each $f_{\text{In}} \in \mathbb{R}[a,b]$, $\forall n \in \mathbb{N}$, and $\sum_{h=1}^{\infty} converges uniformly to f$ on D, then $f \in \mathbb{R}[a,b]$ and $\int_{a}^{b} f = \sum_{h=1}^{\infty} \int_{a}^{b} f_{\text{In}}$. Treterchanging the limit: $\int_{a}^{b} f = \int_{n=1}^{b} \hat{S} f_{n} = \hat{S} \int_{n=1}^{b} \int_{n}^{b} f_{n}.$ The 9.4.4 If cuch for [aib] -> R, nell, . fu exists on [a,b], UneN - Ixo E [a, b] s.t. Efu(xo) converges. · Éfn' converges uniformly on [a,b]

Then $\exists f: [e,b] \rightarrow \mathbb{R}$ s.t.
 Efn converge unifondy to fon [uib] f'exists and f'= Efn'
Pf (of Thu 9.4.2-9.4.4); lipply corresponding result for sequences of functions to the partial sums (sn)
Tests for Uniform Convergence
Tests for Uniform Convergence $T_{\underline{Mn}} \stackrel{q.4.5}{=} (Cauchy Criteria) \stackrel{s}{=} \stackrel{s}{=} f_{\underline{n}} is uniformly convergent on D if and only if \forall \epsilon = 0, \exists k(\epsilon) \in \mathbb{N} \ s.t.$
if M>n>, K(2), futi(x) + + fu(x) < 2, URED
PE: Capply Cauchy Conterior for uniform convergence for sequences of functions

to (Sn) (7m.8.1.10): Sn=3 fiff 4270 3K(E) EN s.t.
$if m > n > K, S_m(x) - S_n(x) < 2$
$\mathbb{P}^{\mathbf{r}}$
$ f_{n+1}(x) + \dots + f_m(x) < \varepsilon$
The 9.4.6 (Weierstrass M-test)
If D full) = Mn UneN, xeD
2) $\sum_{n=1}^{\infty} M_n$ is convergent (not necessarily uniformly convergent)
Then Zfn is uniformly convergent.
$Pf: 0 \le Mn$ and $\sum_{n=1}^{\infty} M_n$ is convergent implies it is Cauchy i.e. Let $L_n = \sum_{k=1}^{\infty} M_k$, then $\forall \ge > 0 = 1 \ K(\ge) \in \mathbb{N}$, s.t. if $M > n = K(\ge)$,
let Ln = ZMK, then HEDD = K(E) EN, s.t. if M>N=K(E),

Lm-Ln <e. (since="" each="" lm="Ln).</th" mn="20,"></e.>
$M_{nti} \neq \dots \neq M_m < \varepsilon$,
By $ f_n(x) \leq M_n$, we then have triangle meg. $ f_{n+1}(x) + \dots + f_m(x) \leq M_{n+1} + \dots + M_m < \epsilon$.
$ f_{nti}(x) + \dots + f_m(x) \in M_{nti} + \dots + M_m < \varepsilon$
So by the Camely Criteria, She converges mifornly on D.
Power Socies
Def 9.4.7 Sin 15 a pomer serves centred at CER
if each $f_n(x) = a_n(x-c)^n$ "infinite polynomical" $\sum_{n=0}^{\infty} a_n(x-c)^n$ Rinh: []For singlicity, from now on we will only talk about the case where
Rinh: DFor singlicity, from now on me will only talk about the case where

the centre c=0, ve are free to dothis because setting
y = x-c (translation), turns any pomer services centred at c
to a pomer serves centred at 0.
the centre c=0. We are free to dottin because setting y = x-c (translation), turns any pomer services centred at c to a pomer serves centred at 0. 2) Tudex from n=0. $\sum_{n=0}^{\infty} a_n x^n = a_n + a_1 x + a_2 x^2 +$
3) Sanxn may not be defined on all of R.
i) $\sum_{n=0}^{\infty} n! x^n$ converges only at $x=0$. (Exercise, Ratio test).
in) $\sum_{n=0}^{\infty} x^n$ converges only for $ x < 1$. (Geometric series).
in) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all $x \in \mathbb{R}$ (Poncer serves expansion for e^x).
So me veel to determine the set on which Sanx" converges.
· · · · · · · · · · · · · · · · · · ·

Recall (Def 3.4.10 & 7m 3.4.11): For (xn) a boundard sequence, the limit super	l'UY
of (Xn), is defined as:	• •
limsup(Kn) := inf { V = R: V < Kn for finitely many n}	• •
= mf { VER: Kn EV for sufficiently large n {	• •
= mf { VER: KnEV for sufficiently large n} = K(V) CN s.t. if N>K(V), then KnEV.	• •
i) If v> linep (xn), then	• •
KnEV for sufficiently large n.	• •
Kn≤v for sufficiently large n. is) If w <linsuplien, infinitely="" many="" nell="" s.t.="" td="" then="" w≤kn.<="" ∃=""><td>· ·</td></linsuplien,>	· ·
Def 9.4.8 Let Sanxn be a pomer series and	• •
Def 9.4.8 ' let $\sum_{n=0}^{\infty} a_n x^n$ be a ponier series and $\int limsup(a_n ^n)$ if $(a_n ^n)$ is a bounded sequence	
p= 2 + 00 otherwise.	• •

Then the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is $R = \frac{1}{e} = \begin{cases} 0 & if p = +\infty \\ \frac{1}{lineup}(lant^n) \end{cases}$ (includes $R = +\infty$ if $p = 0$).
Then the interval of convergence is the gren interval (-R, R).
Thun 9.4.9 (Cauchy-Hadamard Thu): If Risthe reduces of convergence of $\sum_{n=0}^{\infty} a_n x^n$, then $\sum_{n=0}^{\infty} a_n x^n$ is $\begin{cases} absolutely convergent if x < R \end{cases}$
n=0 n=0 { divergent if 1x1>R.
Runk: No conclusion for $ x =R$ i) $\sum_{n=0}^{\infty} x^n$: $p = \lim_{n \to 0} z = 1$. $\Rightarrow R = 1$.

$X=1: \sum_{n=0}^{\infty} X^n = 1+1+\dots$ is dure igent.			 		
N≈o (• •	
$x = -1 \sum_{n=0}^{\infty} x^n = -1 + 1 - 1 + is divergent$			 	• •	
			 		• •
$\vec{n} = (\vec{n} \cdot \vec{n})$			 	0 0	
C = C (Cxetting)			 	• •	• •
N=P is divergent		0 0	 	0 0	
\vec{i}) $\sum_{n=0}^{\infty} x^n : R = l \cdot (\text{Exercise})$ n = p $K = l : \sum_{n=0}^{\infty} x^n = l + \frac{1}{2} + \frac{1}{3} + \dots$ is divergent			 		
\sim		0 0	 	• •	
$x = -1 \sum_{n=0}^{\infty} \frac{1}{2} x^n = -1 + \frac{1}{2} - \frac{1}{3} + \dots$ is contained	rent	۰. ۱۰.	 	0 0	
x = 1 - 2 - 3	$\int_{-\infty}^{\infty}$	• •	 	• •	• •
This) $\sum_{n=0}^{\infty} \frac{1}{n^2} x^n$, R=1, convergent at both $x=1,-1$,		
This 2 Tex" R=1, convergent at both x=1,7	· · · · ·		 	• •	
(1, 2, 2, 2) = 0			 	• •	
			 	• •	
Pf of Candy Hadamard			 		
Case: R=0,+00 left as mexercise. oo assume 0< R<+00. Clearly at x=0, Sanxn cmu			 		
Assume O <rc+00. at="" cloach="" cmu<="" eanxn="" th="" x="0,"><th>enges</th><th></th><th> </th><th></th><th></th></rc+00.>	enges		 		
N20	· (- ·		 • •		

Suppose $ x < R$. Then $\exists 0 < C < 1$ such that $ x = cR = \frac{C}{p}$. $C = p x = \lim \sup(a_n ^{\frac{1}{n}}) x = \lim \sup(a_n ^{\frac{1}{n}} x)$
$\exists K(M,q) \in \mathbb{N}$ s.t. if $N \geqslant K a_n ^{\frac{1}{2}} x \leq C$. $\Rightarrow a_n x^n \leq C^n$, $\forall n > K$.
Since $0 < c < 1$, $\sum_{n=0}^{\infty} c^n$ is convergent, so by comparison test $(3.7.7)$ $\sum_{n=0}^{\infty} a_n x^n $ converges, so $\sum_{n=0}^{\infty} a_n x^n$ is absolutely convergent. n=0
For $ x > R$, $ x > f \iff p > f_{x_1} \implies linsup(a_n ^{\frac{1}{n}}) > f_{x_1}$.
⇒ lant > 1/1 for infinitely many n.
=) (anx") > 1 for mfinitely many n
⇒ anx ⁿ ≠ 0, which implies ∑anx ⁿ duringes.

Rinks 1) If lin antil exists, then R= lin and - Recipiocal of Ratio Test. - Fuclides lin and -> +00 i) Sxn, Staxn, Staxn $\begin{vmatrix} a_{n} \\ a_{n+1} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{(n+1)^{2}} \Rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \end{vmatrix} = \frac{n^{2}}{n^{2}} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \begin{vmatrix} a_{n} \\ a_{n} \\ a_{n} \end{vmatrix} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \left(\frac{n+1}{n}\right)^{2} \rightarrow \left(\frac{n+1}{n}\right)^{2} = \left(\frac{n+1}{n}\right)^{2} \rightarrow \left(\frac{n+1}{n}\right)^{2} = \left(\frac{n+1}{n}\right$ 2) If we can choose 0< c<1 independent of 1×1, then we would have uniforn convergence. The 9.4.10 let R be the radius of convergence of Eanx" and [a,b] C (-R,R) then Equx" is unfomly convergent on [a,b]. (closed and bounded) Rinh: 1) R=0 is execluded $(-R, \tilde{R}) = (0,0) = \beta$.

2) (-R,R) could include (-20, 20), hence why we need [a,b] dosed and bounded, Pf: Since [a,b] C (-R,R) is closed and bounded, 30cc<1 s.E. Since Luiny -cRca and beer So Vxe [a,b], |x|<cR. boot non Cis independent of |x| (only depends on a, b). n1-ch Luin By argument above, $\exists k = k(a,b) \in \mathbb{N} \text{ s.t. } |a_n x^n| \in \mathbb{C}^n$, $\forall n \ge k$. $\sum_{n=0}^{\infty} C^n$ is convergent, so by Weierstress M-test $\sum_{n>0}^{\infty} a_n x^n$ converges uniformly? The 9.4.11) The limit of a poncer series is continans in (-R,R) 2) a pour serves can be integrated term by term $\left(\int_{n=0}^{\infty} a_n x^n \right) = \sum_{n=0}^{\infty} \int_{a}^{b} a_n x^n \right)$

over any closed bomeleel internal [ab] < (-R,R).
$Pf: 1$) $\forall x \in (-R, R)$, take a b such that $x \in [a, b] = (-R, R)$
$Pf: 1$) $\forall x \in (-R, R)$, take aib such that $x \in [a, b] \subset (-R, R)$ aren on $[a, b]$, $\sum_{n=0}^{\infty} a_n x^n$ comerges uniformly and hence is continous on
[a,b], in particular of x.
2) Similar,
Tim 9.4.12 (Differentiation Thm)
a pomer serves can be differentiated term by term mothin the interval
a pour serves can be differentiated term by term mothin the interval of convergence $(-R,R)$, moreover if $R = radius of convergence for$
$f(x) = \sum_{n \geq 0} a_n x^n$, then
the radiu of convergence of Sugarn' is also R and

 $f'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} ha_n x^{n-1}$ for $|x| < \mathbb{R}$. Ruch: This is stronger than the general case because me don't require uniform convergence. $\begin{aligned} & Pf: Since n^{\frac{1}{n}} \rightarrow |, the sequence | n_{\alpha_h}|^{\frac{1}{n}} is bounded if and only if |a_n|^{\frac{1}{n}} is \\ & bounded and moreoner \\ & linsup | na_n|^{\frac{1}{n}} = linsup (n^{\frac{1}{n}} | a_n|^{\frac{1}{n}}) = linsup (|a_n|^{\frac{1}{n}}) \\ & So radius of convergence of <math>\sum_{n=0}^{\infty} na_n x^{n-1} = radius of convergence of \sum_{n=0}^{\infty} na_n x^{n-1} = radius of convergence of na_n x^{n-1} = radius of con$ Vxe(-R,P), choose O<a<R s.t. |x|<a. Then consider [-a,a] ~ (-R,R) is closed bounded OE[-a,a] s.t. Sanxⁿ converges at x=0

So by Tun 8,4.10, Tun 8,2.3 and $(a_n x^n)^r = na_n x^{n-1}$ $\sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=1}^{\infty} (a_n x^n)^r \quad converges uniformly on (-a_1 a].$ So by Tun 9.4.4. $\left(\sum_{n=0}^{\infty} R_n X^n\right)' = \sum_{n=1}^{\infty} n a_n X^{n-1}$ on $[-a_1 a]$. Since K was arbitrary, we have the result on (-R, R)/i. Ruch: 1) The 9.4.12 makes no assertion about |K|=Re.g. $\Xi h^2 x^n$ converges for |x|=1but $(\Xi h^2 x^n)' = \Xi h^2 x^{n-1}$ converges of x=-12) Repected application of The 9.4.12 gives $\forall k \in \mathbb{N}, \quad (\sum_{n=0}^{20} a_n x^n)^{(k)} = \sum_{n=k}^{20} \frac{n!}{(n-k)!} a_n x^{n-k} \quad \text{we radius of convergence } \mathbb{R}.$